王卫光

发布者:管理员发布时间:2013-07-01浏览次数:8752


姓 名
王卫光
性 别
 男 

民 族
 汉
出生日期
1979.12 
政治面貌
民盟盟员 
教 龄
13 
学 历
博士研究生
学 位
博士
现任职务
副院长
技术职称
教授,博士生导师
通信地址
南京市西康路1号 
邮 编
210098 
电 话
13776686725 
Email

 

王卫光,河海大学水文水资源学院教授,博士生导师,水文水资源与水利工程科学国家重点实验室创新固定人员,国家“万人计划”青年拔尖人才入选者。目前担任水文水资源学院副院长(分管研究生招生和培养工作)。

从事变化环境下水文循环和水资源利用响应的学术研究工作。研究方向具体包括:区域蒸散发演化过程及驱动机理、气候变化下流域水文循环响应与模拟、变化环境下农业水资源高效利用,生态水文耦合理论及应用、径流变化归因定量识别、地表蒸散发多源遥感反演与同化。

担任美国土木工程学会(ASCE)期刊《Journal of Hydrologic Engineering》副主编(Associate Editor),《Water Science and Engineering》副主编和《水利水电科技进展》编委;目前为中国水利学会会员、美国土木工程协会会员(ASCE)、国际水文科学协会(IAHS)会员、美国地球物理联合会(AGU)会员;国际期刊Water Resources Research Journal of Geophysical ResearchJournal of HydrologyHydrological ProcessesWater Resources ManagementInternational Journal of ClimatologyHydrological Sciences Journal22个国际权威审稿人。

主持国家自然科学基金项目、科技支撑项目专题、江苏省自然科学基金、国家自然科学基金重点项目课题、澳大利亚联邦政府Endeavor (奋进计划)研究项目。同时,作为核心骨干完成和参与了包括“973”计划项目、国家重点研发项目和国家高技术发展计划“863”资助项目等多项国家级科研项目。

Water Resources ResearchJournal of HydrologyAgricultural and Forest MeteorologyJournal of Geophysical Research-AHydrological ProcessesScientific Reports Global and Planetary ChangeASCE Journal of Hydrologic EngineeringAgricultural Water Management水科学进展,水利学报等期刊上发表科学论文100多篇,包括SCI收录论文64篇(其中,第一作者/通信作者论文32篇,平均影响因子3.095),入选ESI高被引论文2篇,被SCI引用943次,SCI他引835篇次(Web of Science数据库),H指数为19。出版学术专著2 部,参编2 部。授权受理发明专利16 项,软件著作权6 项。研究成果获(省部级)一等奖4 项,江苏省科学技术奖二等奖1 项。

 

Email: wangweiguang@hhu.edu.cn

Phone : 13776686725

一、教育背景

[1]. 博士后:2007.2 – 2009.1,河海大学水文水资源与水利工程科学国家重点实验室。

[2]. 学士-博士:1996.9 – 2006.7,武汉大学水利水电学院水利系

 

二、工作背景:

[1]. 2006.9 – 2009. 3 河海大学水文水资源学院,讲师

[2]. 2009.4 – 2013.4 河海大学水文水资源学院,副教授/硕士生导师

[3]. 2013.5 – 至今  河海大学水文水资源学院,教授/博士生导师

[4]. 2009.9 – 现在水文水资源与水利工程科学国家重点实验室固定研究人员

[5]. 2010.9– 2011.8 澳大利亚联邦科学与工业研究组织(CSIRO)访问学者

[6]. 2014.11 – 2015.04,澳大利亚联邦科工研究组织(CSIRO),澳大利亚联邦政府Endeavor(奋进计划)Visiting Scientist(客座研究员)

[7]. 2016.122017.03,美国中佛罗里达大学,高级访问学者

[8]. 2016.12– 至今,河海大学,水文水资源学院,副院长

 

三、主持和参与的主要科研项目

[1]. 国家自然科学基金项目面上项目2项、青年基金1项(510090465137905751779073),2011-20132014-20172018-2022,主持

[2]. “十二五”国家科技支撑计划专题“新疆适应气候变化的水资源利用技术集成与应用”,主持

[3]. 江苏省自然科学基金面上项目“长江中下游水稻灌溉需水的时空变化规律及其气候变化响应研究”,主持

[4]. 国家重点实验室优秀青年自主创新基金项目“变化环境条件下蒸散发响应过程及其驱动机制”,主持

[5]. 中国博士后科学基金“水循环变化对温室气体排放影响”,主持

[6]. 国家重点研发计划项目“多尺度水文水资源预报预测预警关键技术及应用研究”,主要参与

[7]. “十二五”国家科技支撑项目“灌区农田除涝抗旱减灾关键技术”,专题负责

[8]. 国家自然科学基金重点项目课题“节水控污灌溉理论及其农田环境影响机理”,主持

[9]. 国家重点基础研究发展计划“973项目“海河流域水循环演变机理与水资源高效利用”专题,核心完成

[10]. 国家自然科学基金重点项目“宁蒙河套水平衡及耗水量机制研究”,主要参与

 

四、荣获主要荣誉和人才计划

[1].  国家“万人计划”青年拔尖人才(2015

[2].  澳大利亚联邦政府Endeavor(奋进计划)(2015

[3].  江苏省六大人才高峰高层次人才(2017

[4].  江苏省高校青蓝工程优秀青年骨干教师(2014

[5].  江苏省高校优秀科技创新团队(2013

[6].  中国水利学会刘光文青年科技奖(2015

[7].  河海大学“优秀毕业设计指导教师”2008

[8].  河海大学第二批“优秀创新人才支持计划”(2012

[9].  国家重点基金研究发展计划(973)计划“优秀青年人才”(2013

[10]. 南京市自然科学优秀论文奖(2017);《水利学报》优秀论文奖(2017

 

五、主要学术论文

十篇代表作

[1]       Wang W.*, Shao Q., Peng S., Xing W., Yang T., Luo Y., Yong B., Xu J., 2012. Reference evapotranspiration change and the causes across the Yellow River Basin during 1957-2008 and their spatial and seasonal differences. Water Resources Research, 48, W05530. (水文水资源领域Top期刊,IF=4.397)

[2]       Wang W.*, Ding Y., Shao Q., Xu J., Jiao X., Luo Y., Yu Z., 2017. Bayesian multi-model projection of irrigation requirement and water use efficiency in three typical rice plantation region of China based on CMIP5. Agricultural and Forest Meteorology, 232:89-105. (农业水资源Top期刊,IF=3.887)

[3]       Wang W.*, Li J., Yu Z., Ding Y., Xing W., Lu W., 2018. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: components partitioning, multidecadal trends and dominated factors identifying. Journal of Hydrology, 559, 471-485. (水文水资源领域Top期刊,IF=3.483)

[4]       Wang W.*, Fu J., 2018. Global Assessment of Predictability of Water Availability: A Bivariate Probabilistic Budyko Analysis. Journal of Hydrology, 557, 643-650. (水文水资源领域Top期刊,IF=3.483)

[5]       Xing W., Wang W.*, Shao Q., Yong B., 2018. Identification of dominant interactions between climatic seasonality, catchment characteristics and agricultural activities on Budyko-type equation parameter estimation. Journal of Hydrology, 556, 585-599. (水文水资源领域Top期刊,IF=3.483)

[6]       Wang W.*, Li C., Xing W., Fu J., 2017. Projecting the potential evapotranspiration by coupling different formulations and input data reliabilities: The possible uncertainty source for climate change impacts on hydrological regime. Journal of Hydrology, 555, 298-313. (水文水资源领域Top期刊,IF=3.483)

[7]       Wang W.*, Zou S., Shao Q., Xing W., Chen X., Jiao X., Luo Y., Yong B., Yu Z., 2016. The analytical derivation of multiple elasticities of runoff to climate change and catchment characteristics alteration, Journal of Hydrology, 541, 1042-1056. (水文水资源领域Top期刊,IF=3.483)

[8]       Wang W.*, Xing W., Shao Q., 2015. How large are uncertainties in future projection of reference evapotranspiration through different approaches? Journal of Hydrology, 524, 696-700. (水文水资源领域Top期刊,IF=3.483)

[9]       Wang W.*, Xing W., Shao Q., Yu Z., Peng S., Yang T., Yong B., John, T., Singh V.P., 2013. Changes in reference evapotranspiration across the Tibetan Plateau: Observations and future projections based on statistical downscaling. Journal of Geophysical Research: Atmospheres, 18(10), 4049-4068. (地学领域Top期刊,IF=3.454)

[10]    Wang W.*, Shao Q., Yang T., Peng S., Xing W., Sun F., Luo Y., 2013. Quantitative assessment of the impact of climate variability and human activities on runoff changes: a case study in four catchments of the Haihe River Basin, China. Hydrological Processes, 27(8), 1158-1174. (水文水资源领域权威期刊,IF=3.014)

 

其他论文

[11]    Lu W., Wang W.*, Shao Q., Hao Z., Yu Z., Yong B., Xing W., Li J., 2018, Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: a comprehensive assessment by coupling RegCM4 and VIC model.Hydrological Processes. (Accepted). (水文水资源领域权威期刊,IF=3.014)

[12]    Wang W.*, Xing W., Yang T., Shao Q., Peng S., Yu Z., Yong B., 2013. Characterizing the changing behaviors of precipitation concentration in the Yangtze River Basin, China. Hydrological Processes, 27(24), 3375-3393. (水文水资源领域权威期刊,IF=3.014)

[13]    Xing W., Wang W.*, Shao Q., Yu Z., Yang, T., Fu, J., 2016. Periodic fluctuation of reference evapotranspiration during the past five decades: Does Evaporation Paradox really exist in China? Scientific Reports, 6, 39503. (Nature集团出版期刊,综合类二区,IF=4.259)

[14]    Xing W., Wang W.*, Shao Q., Taylor J., Ding Y., Fu J., Feng X., 2017. Statistical downscaling of reference evapotranspiration in Haihe River Basin: applicability assessment and application to future projection. Hydrological Sciences Journal, 62(1), 15-27. (国际水文协会会刊,IF=2.222)

[15]    Ding Y., Wang W.*, Song R., Shao Q., Jiao X., Xing W., 2017. Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China. Agricultural Water Management, 193, 89-101. (农业水资源Top期刊,IF=2.848)

[16]    Wang W.*, Yu Z., Zhang W., Shao Q., 2014. Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections. Agricultural Water Management, 146, 249-261. (农业水资源Top期刊,IF=2.848)

[17]    Xing W., Wang W.*, Zou S., Deng C., 2018. Projection of future runoff change using elasticity method derived from Budyko framework in major basins across China. Global and Planetary Change, 162, 120-135. (地学二区,IF=3.915)

[18]    Xing W., Wang W.*, Shao Q., Peng S., Yu Z., Yong B, Taylor J., 2014. Changes of reference evapotranspiration in the Haihe River Basin: Present observations and future projection from climatic variables through multi-model ensemble. Global and Planetary Change, 115, 1-15. (地学二区,IF=3.915)

[19]    Wang W.*, Wei J., Shao Q., Xing W., Yong B., Yu Z., Jiao X., 2015. Spatial and temporal variations in hydro-climatic variables and runoff in response to climate change in the Luanhe River basin, China. Stochastic Environmental Research and Risk Assessment, 29(4), 1117-1133. (水文二区,IF=2.629)

[20]    Wang W.*, Shao Q., Yang T., Peng S., Yu Z., Taylor J., Xing W., Zhao C., Sun F., 2013. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stochastic Environmental Research and Risk Assessment, 27(2), 401-421. (水文二区,IF=2.629)

[21]    Wang W., Shao Q., Peng S.*, Zhang Z., Xing W., An G., Yong B., 2011. Spatial and temporal patterns of changes in precipitation during 1957-2007 in the Haihe River basin, China. Stochastic Environmental Research and Risk Assessment, 25(7), 881-895. (水文二区,IF=2.629)

[22]    Wang W.*, Shao Q., Yang T., Yu Z., Xing W., Zhao C., 2014. Multimodel ensemble projections of future climate extremes changes in the Haihe River Basin, China. Theoretical and Applied Climatology, 118(3), 405-417. (水文气象,IF=2.64)

[23]    Cao X., Ren J., Wu M., Guo X., Wang Z., Wang W.*, 2018. Effective use rate of generalized water resources assessment and to improve agricultural water use efficiency evaluation index system. Ecological Indicators, 86, 58-66.

[24]    Cao X., Wu M., Zheng Y., Guo X., Chen D., Wang W.*, 2018. Can China achieve food security through the development of irrigation? Regional Environmental Change, 18(2), 465-475.

[25]    Cao X., Wu M., Guo X., Zheng Y., Gong Y., Wu N., Wang W.*, 2017. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Science of the Total Environment, 609, 587-597.

[26]    Omer A., Wang W.*, Basheer A. K., Yong B., 2017. Integrated assessment of the impacts of climate variability and anthropogenic activities on river runoff: a case study in the Hutuo River Basin, China. Hydrology Research, 48, 416-430.

[27]    Zhang W., Wu Y., Wang W.*, Xing W., 2016. Characterizing the Seasonal Changing Patterns of Hydrological Variables in the East River, Southern China. Journal of Hydrologic Engineering, 21(12), 05016031.

[28]    Wang W., Zou S., Luo Z.*, Chen D., Zhang W., Kong J., 2014. Prediction of the reference evapotranspiration using a chaotic approach. The Scientific World Journal, 10(10), 1-13.

[29]    Wang W.*, Shao Q., Xing W., Yu Z., Peng S., 2014. Closure of "Estimating the effects of climatic variability and human activities on streamflow in the Hutuo River Basin, China. Journal of Hydrologic Engineering, 19(4), 836-839.

[30]    Peng S., Liu W., Wang W.*, Shao Q., Jiao X., Yu Z., Xing W., Xu J., Zhang Z., Luo Y., 2013. Estimating the effects of climatic variability and human activities on streamflow in the Hutuo River Basin, China. Journal of Hydrologic Engineering, 18(4), 422-430.

[31]    Wang W.*, Peng S.*, Yang T., Shao Q., Xu J., Xing W., 2011. Spatial and temporal characteristics of reference evapotranspiration trends in the Haihe River basin, China. Journal of Hydrologic Engineering, 16(3), 239-252.

[32]    Xing W., Wang W.*, Shao Q., Ding Y., 2018. Net Irrigation Requirements of Winter Wheat across Central-Eastern China under Present and Future Climate Scenarios. Journal of Irrigation and Drainage Engineering, doi:10.1061/(ASCE)IR.1943-4774.0001320.

[33]    Chen D., Bi B., Luo Z., Cao X., Wang W., Chen J., 2018. Communicating about the environmental sustainability assessment of China’s cement industry based on emergy. Ecological Indicators, 86, 96-97.

[34]    Cao X., Wu M., Shu R., Zhuo L., Chen D., Shao G., Guo X., Wang W., Tang S., 2018. Water footprint assessment for crop production based on field measurements: A case study of irrigated paddy rice in East China. Science of the Total Environment, 610-611, 84-93.

[35]    Deng C., Liu P., Wang D., Wang W., 2018. Temporal variation and scaling of parameters for a monthly hydrologic model. Journal of Hydrology, 558, 290-300.

[36]    Zhang W., Cao Y., Zhu Y., Wu Y., Ji X., He Y., Xu Y., Wang W., 2017. Flood frequency analysis for alterations of extreme maximum water levels in the Pearl River Delta. Ocean Engineering, 129, 117-132.

[37]    Chen J., Yong B., Ren L., Wang W., Chen B., Lin J., Yu Z., Li N., 2016. Using a Kalman Filter to Assimilate TRMM-Based Real-Time Satellite Precipitation Estimates over Jinghe Basin, China. Remote Sensing, 8(11), 899.

[38]    Yang Y., Cui Y., Luo Y., Lyu X., Traore S., Khan S., Wang W., 2016. Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts. Agricultural Water Management, 177, 329-339.

[39]    Gao X., Peng S., Wang W., Xu J., Yang S., 2016. Spatial and temporal distribution characteristics of reference evapotranspiration trends in Karst area: a case study in Guizhou Province, China. Meteorology and Atmospheric Physics, 128(5), 677-688.

[40]    Gao X., Peng S., Xu J., Yang S., Wang W., 2015. Proper methods and its calibration for estimating reference evapotranspiration using limited climatic data in Southwestern China. Archives of Agronomy and Soil Science, 61(3), 415-426.

[41]    Luo Y., Jiang Y., Peng S., Cui Y., Khan S., Li Y., Wang W., 2015. Hindcasting the effects of climate change on rice yields, irrigation requirements, and water productivity. Paddy and Water Environment, 13(1), 81-89.

[42]    Luo Y., Traore S., Lyu X., Wang W., Wang Y., Xie Y., Jiao X., Fipps G., 2015. Medium Range Daily Reference Evapotranspiration Forecasting by Using ANN and Public Weather Forecasts. Water Resources Management, 29(10), 3863-3876.

[43]    Zhang W., Wang W., Zheng J., Wang H., Wang G., Zhang J., 2015. Reconstruction of stage-discharge relationships and analysis of hydraulic geometry variations: The case study of the Pearl River Delta, China. Global and Planetary Change, 125(1), 60-70.

[44]    Yong, B., Chen, B., Gourley, J., Ren, L., Hong, Y., Chen, X., Wang W., Chen, S., Gong, L., 2014. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-realtime analysis for water resources and hydrologic extremes? Journal of Hydrology, 508, 77-87.

[45]    Chen D., Luo Z., Webber M., Chen J., Wang W., 2014. Emergy evaluation of the contribution of irrigation water, and its utilization, in three agricultural systems in China. Frontiers of Earth Science, 8(3), 325-337.

[46]    Chen D., Luo Z., Webber M., Chen J., Wang W., 2014. Emergy evaluation of a pumping irrigation water production system in China. Frontiers Earth Science, 8(1), 131-141.

[47]    Luo Y., Chang X., Peng S., Khan S., Wang W., Zheng Q., Cai X., 2014. Short-term forecasting of daily reference evapotranspiration using the Hargreaves-Samani model and temperature forecasts. Agricultural Water Management, 136, 42-51.

[48]    Chen D., Liu Z., Luo Z., Wang W., Chen J., 2013. Analysis of residential water tariffs and basic water demand using statistical data. Pakistan Journal of Statistics, 29(5), 857-872.

[49]    Chen D., Luo Z., Wang W., Chen J., Kong J., 2013. Communicating about the emergy ecological footprint for a small fish farm in China. Ecological Indicators, 34, 623-626.

[50]    Xu J., Peng S., Hou H., Yang S., Luo Y., Wang W., 2013. Gaseous losses of nitrogen by ammonia volatilization and nitrous oxide emissions from rice paddies with different irrigation management. Irrigation Science, 31(5), 983-994.

[51]    Xu J., Peng S., Wang W., Yang S., Wei Q., Luo Y., 2013. Prediction of daily reference evapotranspiration by a multiple regression method based on weather forecast data. Archives of Agronomy and Soil Science, 59(11), 1487-1501.

[52]    Yang T., Zhang Q., Wang W., Yu Z., Chen Y.D., Lu G., Hao Z., Baron A., Zhao C., Chen X., Shao Q., 2013. A review of advances in hydrologic science in China in the last decades: impact study of climate change and human activities. ASCE Journal of Hydrologic Engineering, 18(11), 1380-1384.

[53]    Yong B., Ren L., Hong Y., Gourley J., Chen X., Dong J., Wang W., Shen Y., Hardy J., 2013. Spatial-Temporal changes of water resources in a typical Semiarid Basin of North China over the past 50 Years and assessment of possible natural and socioeconomic causes. Journal of Hydrometeorology, 14 (4), 1009-1034.

[54]    Yong B., Ren L., Hong Y., Gourley J., Tian Y., Huffman G., Chen X., Wang W., Wen Y., 2013. First evaluation of the climatological calibration algorithm in the real- time TMPA precipitation estimates over two basins at high and low latitudes. Water Resources Research, 49(5), 2461-2472.

[55]    Chen J., Li M., Wang W., 2012. Statistical uncertainty estimation using random forest and its application to drought forecast. Mathematical Problem in Engineering, 2012, 1-12.

[56]    Luo Y., Jiang Y., Peng S., Khan S., Cai X., Wang W., Jiao X., 2012. Urban Weather Data to Estimate Reference Evapotranspiration for Rural Irrigation Management. Journal of Irrigation and Drainage Engineering, 138(9), 837-842.

[57]    Luo Y., Khan S., Peng S., Rana T., Wang W., Jiang Y., 2012. Effects of the discretisation cell size on the output uncertainty of regional groundwater evapotranspiration modelling. Mathematical and Computer Modelling, 56(1-2), 1-13.

[58]    Yang T., Li H., Wang W., Xu C., Yu Z., 2012. Statistical downscaling of extreme daily precipitation, evaporation, and temperature and construction of future scenarios. Hydrological Processes, 26(23), 3510-3523.

[59]    Peng S., Luo Y., Xu J., Khan S., Jiao X., Wang W., 2012. Integrated irrigation and drainage practices to enhance water productivity and reduce pollution in a rice production system. Irrigation and Drainage, 61(3), 285-293.

[60]    Wang X., Yang T., Shao Q., Acharya K., Wang W., Yu Z., 2012. Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone. Stochastic Environmental Research and Risk Assessment, 26(3), 405-418.

[61]    Xu J., Peng S., Yang S., Wang W., 2012. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agricultural Water Management, 104, 184-192.

[62]    Yang T., Hao X., Shao Q., Xu C.-Y., Zhao C., Chen X.,Wang W., 2012. Multi-model ensemble projections in temperature and precipitation extremes of the Tibetan Plateau in the 21st century. Global and Planetary Change, 80-81, 1-13.

[63]    Yong B., Ren L., Hong Y., Gourley J. J., Chen X., Zhang Y., Yang X., Zhang Z., Wang W., 2012. A novel multiple flow direction algorithm for computing the topographic wetness index. Hydrology Research, 43(1-2), 135-145.

[64]    Yang T., Wang X., Zhao C., Chen X, Yu Z., Shao Q., Xu C., Xia J., Wang W., 2011. Changes of climate extremes in a typical arid zone: Observations and multimodel ensemble projections. Journal of Geophysical Research, 116, D19106.

[65]    王卫光, 李进兴, 魏建德, 邵全喜, 邓超, 余钟波, 基于蒸散发同化数据的径流过程模拟[J]水科学进展, 2018(已在线发表).

[66]    操信春, 任杰, 吴梦洋, 郭相平, 王卫光. 基于水足迹的中国农业用水效果评价[J]. 农业工程学报, 2018, 34(5): 1-8.

[67]    王卫光, 丁一民, 徐俊增, 缴锡云, 杨士红, 多模式集合模拟未来气候变化对水稻需水量及水分利用效率的影响[J], 水利学报, 2016, 47(6):715-723.

[68]    罗玉峰, 毛怡雷, 彭世彰, 郑强, 王卫光, 缴锡云, 冯跃华, 作物生长条件下的阿维里扬诺夫潜水蒸发公式改进[J], 农业工程学报, 2013, (04): 102-109.

[69]    王卫光, 孙风朝, 彭世彰, 徐俊增, 罗玉峰, 缴锡云, 水稻灌溉需水量对气候变化响应的模拟[J], 农业工程学报, 2013, 29(14): 90-98.

[70]    王卫光, 彭世彰, 孙风朝, 邢万秋, 罗玉峰, 徐俊增, 气候变化下长江中下游水稻灌溉需水量时空变化特征[J], 水科学进展, 2012, 23(5): 656-664.

[71]    徐俊增, 彭世彰, 张行南, 丁加丽, 王卫光, 两种Penman-Monteith公式计算草坪草参考腾发量的适用性[J], 农业工程学报, 2009, 25(12): 32-37.

[72]    王卫光, 彭世彰, 罗玉峰, 参考作物腾发量的混沌性识别及预测[J], 水利学报, 2008, 39(09): 1030-1036.

[73]    王卫光, 彭世彰, 大型灌区水平衡要素尺度特征研究[J], 水利学报, 2007, 01(S1): 432-435.

[74]    王卫光, 陆文君, 邢万秋, 李进兴, 李长妮, 黄河流域Budyko方程参数n演变规律及其归因研究[J], 水资源保护, 2018(02).

[75]    姚冠泽, 王卫光, 李进兴, 汉江流域多种遥感蒸散发产品评估[J], 中国农村水利水电, 2018 (05).

[76]    宋瑞明, 王卫光, 张翔宇, 丁一民, 江苏省水稻高温热害发生规律及未来情景预估[J], 灌溉排水学报, 2017, 36(1): 40-46.

[77]    丁一民, 王卫光, 孙风朝, 水稻产量和灌溉需水量的气候敏感性分析及贡献量评估[J], 灌溉排水学报, 2016, 35(4):39-42.

[78]    鲍金丽, 王卫光, 丁一民, 控制灌溉条件下水稻灌溉需水量对气候变化的响应[J], 中国农村水利水电, 2016(8):105-108.

[79]    高晓丽, 徐俊增, 缴锡云, 王卫光, 杨士红, 熊玉江, 考虑地形对气温影响的ET0计算方法研究[J], 节水灌溉, 2016(8):157-161.

[80]    曹雪松, 唐如洋, 王卫光, 徐建叶, 两种统计降尺度模型在滦河流域的降水预估[J], 扬州大学学报(自然科学版), 2016(2):28-32.

[81]    李自兰, 王卫光, 天山南坡和昆仑山北坡年径流变化趋势及其影响因子分析[J], 中国农村水利水电, 2015, 4: 85-89.

[82]    张小琳, 王卫光, 陈曙光, 朱非林, 基于HBV模型的实际蒸散发估算模型评估[J], 水电能源科学, 2015, 33(2): 15-18.

[83]    赵翠平, 陈岩, 王卫光, 郜志云, 黄河流域近50a极端降水指数的时空变化[J], 人民黄河, 2015, 37(1): 18-22.

[84]    罗玉峰, 张亚东, 韩冰, 王卫光, 缴锡云, 江苏省水稻灌溉需水量空间分布规律研究[J], 水电能源科学, 2014, 32(11): 27-30.

[85]    邢万秋, 王卫光, 邵全喜, 杨慧, 彭世彰, 余钟波, 杨涛, 未来气候情景下海河流域参考蒸发蒸腾量预估[J], 应用基础与工程科学学报, 2014, 22(2): 239-251.

[86]    罗玉峰, 李思, 彭世彰, 王卫光, 缴锡云, 姜云鹭, 顾宏, 基于气温预报和HS公式的参考作物腾发量预报[J], 排灌机械工程学报, 2013, 31(11): 987-992.

[87]    王卫光, 孙风朝, 彭世彰, 罗玉峰, 徐俊增, 缴锡云, CO2质量分数升高对水稻生长及水分利用效率的影响[J], 灌溉排水学报, 2013, 32(2): 65-68.

[88]    朱非林, 王卫光, 孙一萌, 郑强, 基于互补相关原理的实际蒸散发模型估算能力评价[J], 水电能源科学, 2013, 31(6): 33-35.

[89]    朱非林, 王卫光, 孙一萌, 郑强, 汉江流域实际蒸散发的时空演变规律及成因分析[J], 河海大学学报(自然科学版), 2013, 41(4): 300-306.

[90]    王卫光, 邢万秋, 彭世彰, 刘万新, 海河流域50年来参考腾发量的时空变化规律及其影响原因[J], 应用基础与工程科学学报, 2012, 20(2): 237-252.

[91]    严其芳, 王卫光, 王志平, 张蔚, 小波网络耦合模型在地下水位动态预测中的应用[J], 水电能源科学, 2012, 30(5): 16-20.

[92]    韩冰, 罗玉峰, 王卫光, 彭世彰, 缴锡云, 气候变化对水稻生育期及灌溉需水量的影响[J], 灌溉排水学报, 2011, 30(1): 29-32.

[93]    邢万秋, 王卫光, 吴杨青, 安贵阳, 淮河流域降雨集中度的时空演变规律分析[J], 水电能源科学, 2011, 29(5): 1-5.

[94]    罗玉峰, 缴锡云, 彭世彰, 王卫光, 徐俊增, 海河流域参考作物腾发量长期变化趋势分析[J], 灌溉排水学报, 2009, 28(01): 10-13.

[95]    王卫光, 张仁铎, 基于混沌理论的降雨量降尺度方法[J], 华中科技大学学报(自然科学版), 2008, 36(06): 129-132.

[96]    王卫光, 刘万新, 邢万秋, 海河流域农田生态格局及气候变化对水循环的影响, 中国水利水电出版社, 2015. 专著.

[97]    彭世彰, 罗玉峰, 王卫光, 水稻节水高产控制灌溉实用技术, 中国水利水电出版社, 2015. 专著.